
Mod-16 Counter Using JK Flip Flops

Yilan Liu

Last updated: January 18, 2025

Initial Motivation

The initial motivation for making a mod-16 counter came from wanting to re-
duce the complexity of a project I was tackling at the time. This project made
heavy use of the Multiplexer-16 gate which I had simply constructed as a col-
lection of sixteen individual Multiplexer gates.

When it came time for me to step back and evaluate my work on the project, I
realized that if I wanted to continue, I would need to construct the Multiplexer
16 gate in a much more scalable way so as to drastically reduce the overall com-
plexity of the project. My idea for the revised construction was to only use one
Multiplexer gate that would be used sixteen times over. My construction called
for some sort of counter that would go from 0 to 15 with every clock cycle, and
then return to 0 to start over again.

Thus began my project of making a mod-16 counter.

At first, I wasn’t even sure if building such a counter using electrical com-
ponents was possible. However, after much research, I stumbled across this
youtube video that essentially explained how to construct a mod-8 counter us-
ing JK flip flops. After understanding the gist of their approach, I extended
it to a mod-16 counter (basically going from three to four JK flip flops) and
verified its correctness by implementing it on a breadboard.

Specifications

The Mod-16/4-bit counter takes as input a clock and returns as output a high-
low value for four bus lines Q0, Q1, Q2, and Q3. The bus lines are meant to be
collectively interpreted as an integer n, where

n = Q02
0 +Q12

1 +Q2
2 +Q32

3.

The integer n is initialized at 0 and is incremented with each clock cycle. After
reaching the value 15, n returns to 0 with the next clock cycle, thus completing
the mod-16 cycle.

1

https://youtu.be/Zbmj-AHBxeA
https://youtu.be/Zbmj-AHBxeA


Wiring the JK Flip Flops

We begin by considering some fixed present state (Q3Q2Q1Q0) and thinking
about which state we want to follow it (Q+

3 Q
+
2 Q

+
1 Q

+
0 ).

Q3Q2Q1Q0 Q+
3 Q

+
2 Q

+
1 Q

+
0

0000 0001
0001 0010
0010 0011
0011 0100
0100 0101
0101 0110
0110 0111
0111 1000
1000 1001
1001 1010
1010 1011
1011 1100
1100 1101
1101 1110
1110 1111
1111 0000

Then, we recall what the J and K inputs of a JK flip flop need to be for each
possible bit-to-bit transition, as indicated by the table below. Here, “×” stands
for “don’t care”.

J K

0 → 0 0 ×
0 → 1 1 ×
1 → 0 × 1
1 → 1 × 0

Explanation of the above table:

1. The transition 0 → 0 only requires that J = 0. This is because the JK
pair (0, 0) would keep the state unchanged from 0 and the JK pair (0, 1)
would reset the state to 0 from 0.

2. The transition 0 → 1 only requires that J = 1. This is because the JK
pair (1, 0) would set the state from 0 to 1 and the JK pair (1, 1) would
toggle the state from 0 to 1.

3. The transition 1 → 0 only requires that K = 1. This is because the JK
pair (0, 1) would reset the state from 1 to 0 and the JK pair (1, 1) would
toggle the state from 1 to 0.

2



4. The transition 1 → 1 only requires that K = 0. This is because the JK
pair (0, 0) would keep the state unchanged from 1 and the JK pair (1, 0)
would set the state to 1 from 1.

Then, going back to our first table, we fixate on one row at a time, and within
each row, we fixate on the bits Qn and Q+

n , where 0 ≤ n ≤ 3. We use this to
determine Jn and Kn as shown below. For example, take the first row in the
first table. We have that Q0 = 0 transitions to Q+

0 = 1. We then look at our
second table and notice that such a transition requires that J be 1 and K be
anything, which is why we fill in “1 ×” under J0K0 in the first row. We fill in
the remaining parts of the table in similar fashion.

Q3Q2Q1Q0 Q+
3 Q

+
2 Q

+
1 Q

+
0 J3K3 J2K2 J1K1 J0K0

0000 0001 0 × 0 × 0 × 1 ×
0001 0010 0 × 0 × 1 × × 1
0010 0011 0 × 0 × × 0 1 ×
0011 0100 0 × 1 × × 1 × 1
0100 0101 0 × × 0 0 × 1 ×
0101 0110 0 × × 0 1 × × 1
0110 0111 0 × × 0 × 0 1 ×
0111 1000 1 × × 1 × 1 × 1
1000 1001 × 0 0 × 0 × 1 ×
1001 1010 × 0 0 × 1 × × 1
1010 1011 × 0 0 × × 0 1 ×
1011 1100 × 0 1 × × 1 × 1
1100 1101 × 0 × 0 0 × 1 ×
1101 1110 × 0 × 0 1 × × 1
1110 1111 × 0 × 0 × 0 1 ×
1111 0000 × 1 × 1 × 1 × 1

Finally, from this table, we determine the values that the J and K inputs to our
four JK flip flops should be set to. There’s a technique that the youtube video
used for J0,K0, J1,K1, J2, and K2, but to figure out J3 and K3, I worked out
what they should be by observing the pattern and extending it.

We obtain the values as follows:

1. J0 = K0 = 1

2. J1 = K1 = Q0

3. J2 = K2 = Q1Q0

4. J3 = K3 = Q2Q1Q0

We wire the JK flip flops accordingly as shown in the below image. Here, IC2
and IC3 are dual JK flip flops and U1 and U2 are AND gates.

3



Implementation on Breadboard

A complete clock cycle is demonstrated in the below picture. On the bread-
board, instead of using a crystal oscillator, I simulate a clock pulse by pressing
down on a switch manually. To visualize the high/low values of Q0, Q1, Q2, and
Q3, I connected LEDs to each line that would light up on a high value and be
dark on a low value.

Here’s a closer look at the breadboard:

4



Struggles and Lessons Learned

Compared to the amount of time I spent wiring the JK flip flops on paper and
learning the theory, actually implementing the counter on a breadboard took
much longer than I thought it would take. I encountered many unexpected
hurdles, some of which I discuss below. However, ultimately I came away from
the project with some rich experience, so it was all worth it.

1. Always pair a SPST (Single-Pole Single-Throw) switch with a
pull-up/pull-down resistor. I’ve always heard hundreds of times in
class that a pull-up/pull-down resistor would be needed in certain scenar-
ios, but never internalized why. (In fact, you can see from another project
linked on my website that I made the same exact mistake of not including
a pull-up/pull-down resistor when I should’ve.) This time, after struggling
with various issues that were traced back to a floating ground, I finally
understand the concept.

2. Perform sanity checks on the power line. Towards the start of my

5



project, I kept having issues with unexpected outputs from my two JK
flip flops. After much debugging, I discovered that the battery I was using
as a power source wasn’t delivering the desired output. Luckily, I had an
Arduino on hand with 5V and 3.3V outputs built in, so I switched to using
that as my power source.

3. Beware of pushbutton switches without brackets. I experienced a
lot of issues with the first switch I used which didn’t have brackets. Firm
presses on the switch would sometimes not be registered, and other times,
they would be registered as two quick presses. I finally got fed up after a
couple of days and took to searching for a new switch. As I was reading
the datasheet for a potential suitor, I saw that the manufacturer had made
a variation of the switch with brackets. After looking into it, I discovered
that switches with brackets are quite common and are designed for users
who need to mount the component onto a breadboard.

Future Directions

As I mentioned in the first section, this project was born out of a desire to
reduce the complexity of my design of the Multiplexer 16 chip that I was using
in another project. Now that I have finished building the counter and verified
its correctness, I feel confident proceeding with my redesign of the Multiplexer
16 chip.

6


